1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole (2024)

  • Journal List
  • Acta Crystallogr Sect E Struct Rep Online
  • v.66(Pt 1); 2010 Jan 1
  • PMC2980028

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsem*nt of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer | PMC Copyright Notice

1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole (1)

International Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article

Acta Crystallogr Sect E Struct Rep Online. 2010 Jan 1; 66(Pt 1): o107–o108.

Published online 2009 Dec 12. doi:10.1107/S1600536809052568

PMCID: PMC2980028

PMID: 21579997

Özden Özel Güven,a Hakan Tahtacı,a Simon J. Coles,b and Tuncer Hökelekc,*

Author information Article notes Copyright and License information PMC Disclaimer

Associated Data

Supplementary Materials

Abstract

In the mol­ecule of the title compound, C15H13Cl2N3O2, the triazole ring is oriented at dihedral angles of 2.54 (13) and 44.43 (12)°, respectively with respect to the furan and dichloro­benzene rings. The dihedral angle between the dichloro­benzene and furan rings is 46.75 (12)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers and π–π contacts between dichloro­benzene rings [centroid–centroid distance = 3.583 (2) Å] may further stabilize the structure. Inter­molecular C—H⋯π contacts between the triazole and furan rings also occur.

Related literature

For general background to anti­fungal agents, see: Caira et al. (2004); Godefroi et al. (1969); Özel Güven et al. (2007a ,b ); Paulvannan et al. (2001); Peeters et al. (1996); Wahbi et al. (1995). For related structures, see: Freer et al. (1986); Özel Güven et al. (2008a ,b ,c ,d ,e ,f ); Özel Güven et al. (2009); Peeters et al. (1979).

Experimental

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.837, T max = 0.955

  • 33067 measured reflections

  • 3438 independent reflections

  • 2775 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.180

  • S = 1.04

  • 3438 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Table 1

Hydrogen-bond geometry (Å, °)

D—H⋯AD—HH⋯ADAD—H⋯A
C2—H2⋯O1i0.932.443.363 (3)173
C9—H9B⋯Cl20.972.623.109 (3)112
C1—H1⋯Cg2ii0.932.793.488 (4)133
C7—H7⋯Cg1iii0.932.933.570 (4)127

Open in a separate window

Symmetry codes: (i) 1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole (4); (ii) 1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole (5); (iii) 1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole (6). Cg1 and Cg2 are the centroids of the N1–N3/C1/C2 and O2/C5–C8 rings, respectively.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809052568/xu2704sup1.cif

Click here to view.(19K, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809052568/xu2704Isup2.hkl

Click here to view.(165K, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Zonguldak Karaelmas University Research Fund (project No. 2008–13–02–06) for financial support.

supplementary crystallographic information

Comment

In recent years, among antifungal agents, azole derivatives still have animportant place in the class of systemic antifungal drugs. Some etherstructures containing 1H-imidazole ring like micozanole, ecozanole andsulconazole have been synthesized and developed for clinical uses asantifungal agents (Godefroi et al., 1969). The crystalstructures ofthese ether derivatives like miconazole (Peeters et al., 1979),econazole (Freer et al., 1986) have been reported previously.Also,antifungal activity of aromatic ethers possessing 1H-1,2,4-triazolering have been reported (Wahbi et al., 1995). Itraconazole(Peeterset al., 1996) and fluconazole (Caira et al.,2004) are1H-1,2,4-triazole ring containing azole derivatives. 1,2,4-Triazolesare biologically interesting molecules and their chemistry is receivingconsiderable attention due to antihypertensive, antifungal and antibacterialproperties (Paulvannan et al., 2001). Ether structurespossessing1H-benzimidazole ring have been reported to show antibacterial activitymore than antifungal activity (Özel Güven et al.,2007a,b).The crystal structures of 1H-benzimidazole ring containing etherderivatives (Özel Güven et al.,2008a,b,c,d) andalso,1H-1,2,4-triazole ring containing ether derivatives have beenreported recently (Özel Güven et al., 2008e,f;Özel Güvenet al., 2009). Now, we report herein the crystal structure of2,6-dichloro- derivative of 1H-1,2,4-triazole and furyl ringscontaining ether structure.

In the molecule of the title compound (Fig. 1) the bond lengths and angles aregenerally within normal ranges. The planar triazole ring is oriented withrespect to the furan and dichlorobenzene rings at dihedral angles of 2.54(13)°and 44.43(12)°, respectively. Atoms C3, C4 and C9 are -0.064(3), 0.039(3) and-0.073(3) Å away from the planes of the triazole, furan and dichlorobenzene,respectively. So, they are nearly coplanar with the adjacent rings. Thedichlorobenzene ring is oriented with respect to the furan ring at a dihedralangle of 46.75(12)°. An intramolecular C—H···Cl hydrogen bond (Table 1)results in the formation of a five-membered ring (Cl2/H9B/C9/C10/C15) adoptingenvelope conformation with H9B atom displaced by 0.210(1) Å from the planeof the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) linkthe molecules into centrosymmetric dimers (Fig. 2), in which they may beeffective in the stabilization of the structure. The π–π contact betweenthe dichlorobenzene rings, Cg3—Cg3i [symmetry code: (i) -x, -y, 1 - z,where Cg3 is centroid of the ring (C10-C15)] may further stabilize thestructure, with centroid-centroid distance of 3.583(2) Å. IntermolecularC—H···π interactions (Table 1) are also observed between the triazole andfuran rings.

Experimental

The title compound was synthesized by the reaction of1-(furan-2-yl)-2-(1H-1,2,4-triazol-1-yl)ethanol (unpublished results)with NaH and appropriate benzyl halide. To a solution of alcohol (500 mg,2.791 mmol) in DMF (4 ml) was added NaH (112 mg, 2.791 mmol) in smallfractions. The appropriate benzyl halide (669 mg, 2.791 mmol) was addeddropwise. The mixture was stirred at room temperature for 3 h, and excesshydride was decomposed with methyl alcohol (5 ml). After evaporation todryness under reduced pressure, the crude residue was suspended with water andextracted with methylene chloride. The organic layer was dried over anhydroussodium sulfate and then evaporated to dryness. The crude residue was purifiedby chromatography on a silica-gel column using chloroform as eluent. Crystalssuitable for X-ray analysis were obtained by the recrystallization of theether from isopropanol solution (yield; 500 mg, 53%).

Refinement

H atoms were positioned geometrically, with C–H = 0.93, 0.98 and 0.97 Å foraromatic, methine and methylene H, respectively, and constrained to ride ontheir parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Open in a separate window

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Open in a separate window

Fig. 2.

A partial packing diagram.

Crystal data

C15H13Cl2N3O2F(000) = 696
Mr = 338.18Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23020 reflections
a = 10.5853 (3) Åθ = 2.9–27.5°
b = 12.4960 (2) ŵ = 0.44 mm1
c = 12.5850 (3) ÅT = 120 K
β = 114.455 (1)°Plate, colorless
V = 1515.32 (6) Å30.40 × 0.40 × 0.10 mm
Z = 4

Open in a separate window

Data collection

Bruker–Nonius KappaCCD diffractometer3438 independent reflections
Radiation source: fine-focus sealed tube2775 reflections with I > 2σ(I)
graphiteRint = 0.058
φ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −13→13
Tmin = 0.837, Tmax = 0.955k = −14→15
33067 measured reflectionsl = −16→16

Open in a separate window

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.180w = 1/[σ2(Fo2) + (0.0984P)2 + 1.9705P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3438 reflectionsΔρmax = 1.20 e Å3
200 parametersΔρmin = −0.76 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (5)

Open in a separate window

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Open in a separate window

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.32066 (8)0.66344 (7)1.08482 (8)0.0470 (3)
Cl20.29005 (8)0.31220 (7)0.82358 (9)0.0497 (3)
O10.07950 (17)0.54757 (14)0.86960 (15)0.0231 (4)
O2−0.1088 (3)0.5914 (2)0.5685 (2)0.0483 (6)
N1−0.0576 (2)0.71549 (17)0.93071 (19)0.0226 (5)
N2−0.0121 (2)0.81516 (18)0.9183 (2)0.0284 (5)
N30.0458 (2)0.7770 (2)1.1089 (2)0.0298 (5)
C10.0483 (3)0.8475 (2)1.0282 (3)0.0300 (6)
H10.08980.91441.04870.036*
C2−0.0207 (3)0.6947 (2)1.0435 (2)0.0255 (5)
H2−0.03930.63091.07240.031*
C3−0.1260 (3)0.6463 (2)0.8301 (2)0.0248 (5)
H3A−0.20230.68460.77060.030*
H3B−0.16380.58420.85300.030*
C4−0.0241 (2)0.6098 (2)0.7800 (2)0.0228 (5)
H40.01970.67270.76280.027*
C5−0.0952 (3)0.5454 (2)0.6705 (2)0.0250 (5)
C6−0.1805 (4)0.5198 (4)0.4817 (3)0.0582 (11)
H6−0.20480.53110.40260.070*
C7−0.2101 (3)0.4328 (3)0.5259 (3)0.0457 (9)
H7−0.25640.37260.48470.055*
C8−0.1574 (3)0.4484 (3)0.6500 (3)0.0429 (8)
H8−0.16460.40160.70470.051*
C90.2081 (3)0.5444 (2)0.8579 (2)0.0244 (5)
H9A0.24160.61640.85650.029*
H9B0.19610.50860.78590.029*
C100.3091 (2)0.4839 (2)0.9611 (2)0.0224 (5)
C110.3640 (3)0.5315 (2)1.0718 (2)0.0283 (6)
C120.4517 (3)0.4781 (3)1.1713 (3)0.0424 (8)
H120.48490.51221.24350.051*
C130.4890 (3)0.3753 (3)1.1629 (3)0.0459 (9)
H130.54690.33881.22970.055*
C140.4416 (3)0.3250 (2)1.0558 (4)0.0427 (9)
H140.46950.25551.05000.051*
C150.3507 (3)0.3794 (2)0.9559 (3)0.0304 (6)

Open in a separate window

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0272 (4)0.0521 (5)0.0535 (5)0.0023 (3)0.0085 (3)−0.0273 (4)
Cl20.0340 (4)0.0412 (5)0.0711 (6)−0.0067 (3)0.0191 (4)−0.0283 (4)
O10.0144 (8)0.0260 (9)0.0257 (9)0.0012 (6)0.0052 (7)0.0068 (7)
O20.0633 (16)0.0525 (15)0.0306 (12)−0.0134 (12)0.0208 (11)−0.0054 (10)
N10.0183 (10)0.0227 (11)0.0247 (11)−0.0008 (8)0.0069 (8)0.0013 (8)
N20.0284 (12)0.0243 (12)0.0289 (12)−0.0032 (9)0.0082 (9)0.0016 (9)
N30.0262 (11)0.0356 (13)0.0269 (12)0.0010 (10)0.0105 (9)−0.0031 (9)
C10.0244 (13)0.0283 (14)0.0341 (15)−0.0025 (10)0.0089 (11)−0.0028 (11)
C20.0228 (12)0.0282 (13)0.0282 (13)0.0003 (10)0.0131 (11)0.0020 (10)
C30.0172 (11)0.0250 (13)0.0271 (13)−0.0020 (9)0.0041 (10)−0.0012 (10)
C40.0168 (11)0.0230 (12)0.0233 (12)0.0005 (9)0.0032 (9)0.0040 (9)
C50.0201 (12)0.0264 (13)0.0247 (13)0.0046 (9)0.0057 (10)0.0000 (10)
C60.065 (3)0.077 (3)0.0307 (17)−0.009 (2)0.0176 (17)−0.0201 (17)
C70.0299 (15)0.0392 (18)0.051 (2)0.0080 (13)−0.0004 (14)−0.0203 (15)
C80.0333 (16)0.0322 (16)0.0470 (19)−0.0052 (12)0.0004 (14)0.0062 (13)
C90.0177 (11)0.0308 (13)0.0254 (13)0.0016 (9)0.0096 (10)0.0038 (10)
C100.0152 (11)0.0240 (12)0.0286 (13)0.0001 (9)0.0095 (10)0.0050 (10)
C110.0165 (11)0.0400 (15)0.0289 (14)0.0013 (10)0.0098 (10)0.0039 (11)
C120.0208 (13)0.080 (3)0.0261 (15)0.0038 (14)0.0098 (12)0.0119 (15)
C130.0222 (14)0.068 (2)0.0461 (19)0.0056 (14)0.0131 (13)0.0354 (17)
C140.0233 (14)0.0281 (15)0.080 (3)0.0056 (11)0.0243 (16)0.0228 (15)
C150.0190 (12)0.0248 (13)0.0472 (17)−0.0040 (10)0.0134 (12)−0.0008 (11)

Open in a separate window

Geometric parameters (Å, °)

N1—N21.367(3)C7—C81.438(5)
C1—N21.324(4)C7—H70.9300
C1—N31.352(4)C8—H80.9300
C1—H10.9300C9—O11.429(3)
C2—N31.323(4)C9—H9A0.9700
C2—N11.333(3)C9—H9B0.9700
C2—H20.9300C10—C91.501(3)
C3—N11.455(3)C10—C111.401(4)
C3—H3A0.9700C10—C151.389(4)
C3—H3B0.9700C11—Cl11.737(3)
C4—O11.434(3)C11—C121.383(4)
C4—C31.527(4)C12—C131.361(6)
C4—C51.501(4)C12—H120.9300
C4—H40.9800C13—C141.380(6)
C5—O21.359(4)C13—H130.9300
C5—C81.352(4)C14—C151.403(4)
C6—O21.373(4)C14—H140.9300
C6—C71.317(6)C15—Cl21.733(3)
C6—H60.9300
C9—O1—C4112.62(18)C6—C7—C8107.1(3)
C5—O2—C6106.5(3)C6—C7—H7126.5
N2—N1—C3120.9(2)C8—C7—H7126.5
C2—N1—N2109.7(2)C5—C8—C7105.6(3)
C2—N1—C3129.2(2)C5—C8—H8127.2
C1—N2—N1101.5(2)C7—C8—H8127.2
C2—N3—C1102.1(2)O1—C9—C10107.01(19)
N2—C1—N3115.7(2)O1—C9—H9A110.3
N2—C1—H1122.1O1—C9—H9B110.3
N3—C1—H1122.1C10—C9—H9A110.3
N1—C2—H2124.5C10—C9—H9B110.3
N3—C2—N1110.9(2)H9A—C9—H9B108.6
N3—C2—H2124.5C11—C10—C9120.1(2)
N1—C3—C4110.8(2)C15—C10—C9124.0(2)
N1—C3—H3A109.5C15—C10—C11115.9(2)
N1—C3—H3B109.5C10—C11—Cl1118.7(2)
C4—C3—H3A109.5C12—C11—C10122.9(3)
C4—C3—H3B109.5C12—C11—Cl1118.5(3)
H3A—C3—H3B108.1C11—C12—H12120.3
O1—C4—C3106.1(2)C13—C12—C11119.5(3)
O1—C4—C5111.1(2)C13—C12—H12120.3
O1—C4—H4109.3C12—C13—C14120.5(3)
C3—C4—H4109.3C12—C13—H13119.8
C5—C4—C3111.5(2)C14—C13—H13119.8
C5—C4—H4109.3C13—C14—C15119.5(3)
O2—C5—C4117.2(2)C13—C14—H14120.3
C8—C5—O2110.3(3)C15—C14—H14120.3
C8—C5—C4132.5(3)C10—C15—Cl2120.2(2)
O2—C6—H6124.7C10—C15—C14121.8(3)
C7—C6—O2110.6(3)C14—C15—Cl2118.1(2)
C7—C6—H6124.7
C2—N1—N2—C1−1.0(3)C7—C6—O2—C5−0.4(4)
C3—N1—N2—C1−176.9(2)O2—C6—C7—C81.3(4)
N3—C1—N2—N10.4(3)C6—C7—C8—C5−1.7(4)
N2—C1—N3—C20.3(3)C10—C9—O1—C4176.0(2)
N3—C2—N1—N21.3(3)C11—C10—C9—O1−73.1(3)
N3—C2—N1—C3176.7(2)C15—C10—C9—O1104.8(3)
N1—C2—N3—C1−1.0(3)C9—C10—C11—Cl1−3.8(3)
C4—C3—N1—C2−107.0(3)C9—C10—C11—C12176.5(2)
C4—C3—N1—N268.0(3)C15—C10—C11—Cl1178.21(19)
C3—C4—O1—C9−156.0(2)C15—C10—C11—C12−1.5(4)
C5—C4—O1—C982.6(3)C9—C10—C15—Cl22.2(3)
O1—C4—C3—N163.3(3)C9—C10—C15—C14−177.5(2)
C5—C4—C3—N1−175.5(2)C11—C10—C15—Cl2−179.85(19)
O1—C4—C5—O2−132.0(2)C11—C10—C15—C140.4(4)
O1—C4—C5—C851.7(4)C10—C11—C12—C130.9(4)
C3—C4—C5—O2109.7(3)Cl1—C11—C12—C13−178.8(2)
C3—C4—C5—C8−66.6(4)C11—C12—C13—C140.9(4)
C4—C5—O2—C6−177.9(3)C12—C13—C14—C15−2.0(4)
C8—C5—O2—C6−0.8(4)C13—C14—C15—Cl2−178.4(2)
O2—C5—C8—C71.5(4)C13—C14—C15—C101.3(4)
C4—C5—C8—C7178.0(3)

Open in a separate window

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1–N3/C1/C2 and O2/C5–C8 rings,respectively.

Open in a separate window

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.443.363(3)173
C9—H9B···Cl20.972.623.109(3)112
C1—H1···Cg2ii0.932.793.488(4)133
C7—H7···Cg1iii0.932.933.570(4)127

Open in a separate window

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−3/2, −y−1/2, z−3/2; (iii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2704).

References

  • Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci.93, 601–611. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  • Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. J. (1969). J. Med. Chem.12, 784–791. [PubMed]
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1437. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1496–o1497. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008c). Acta Cryst. E64, o1588–o1589. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008d). Acta Cryst. E64, o1655–o1656. [PMC free article] [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem.44, 731–734.
  • Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008e). Acta Cryst. E64, o1914–o1915. [PMC free article] [PubMed]
  • Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2009). Acta Cryst. E65, o2868–o2869. [PMC free article] [PubMed]
  • Özel Güven, Ö., Tahtacı, H., Tahir, M. N. & Hökelek, T. (2008f). Acta Cryst. E64, o2465. [PMC free article] [PubMed]
  • Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem.30, 955–962.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

1-[2-(2,6-Dichloro­benz­yloxy)-2-(2-fur­yl)eth­yl]-1H-1,2,4-triazole (2024)
Top Articles
Latest Posts
Article information

Author: Stevie Stamm

Last Updated:

Views: 6142

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Stevie Stamm

Birthday: 1996-06-22

Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

Phone: +342332224300

Job: Future Advertising Analyst

Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.